webvic-b

twitter linkedinfacebookacp contact us

Energy Transition

The UAE can lead by example in demonstrating how hydrogen can be safely and effectively harnessed as a clean energy source.

Andrew Dennant, general manager for HIMA Middle East FZE highlights the need for advanced safety systems to be integrated into the hydrogen value chain to ensure the successful and secure adoption of hydrogen in line with the UAE's sustainability goals

As the global energy landscape transitions toward sustainability, hydrogen has emerged as a promising resource, particularly for nations such as the UAE, where clean energy and sustainability are central to national priorities. While hydrogen offers substantial potential as an energy source and reduces carbon emissions, its safe use requires advanced functional safety solutions, especially in large-scale industrial applications.

The role of hydrogen in a sustainable future

Hydrogen is gaining increasing attention as a viable alternative to traditional fossil fuels. Currently, most hydrogen used in industrial processes is derived from natural gas, commonly called grey hydrogen. However, green hydrogen, produced from water using renewable energy sources such as wind or solar power, is becoming increasingly significant. This process enables a substantial reduction in carbon emissions, positioning green hydrogen as a key component in the transition to a global zero-emission energy system.

In the UAE, green hydrogen is expected to play a crucial role in decarbonising various sectors, including power generation, transportation and heavy industry. While hydrogen’s adoption remains limited, its use is anticipated to grow significantly as both technology and infrastructure continue to evolve.

Safe use of hydrogen in industrial applications

Hydrogen is already widely utilised in industrial processes, such as ammonia production for fertilisers and in high-temperature manufacturing processes. Despite its advantages, hydrogen poses unique safety challenges due to its highly flammable nature. Leaks or uncontained releases of hydrogen can result in significant safety hazards. Therefore, hydrogen must be handled with the utmost care during production, storage and transportation.

Ensuring the safe use of hydrogen in industrial settings requires the deployment of advanced safety solutions. These systems must be designed to mitigate the specific application risks if hydrogen is to be used safely throughout their entire lifecycle.

Functional safety solutions for hydrogen

In large-scale operations, such as power plants or industrial facilities, advanced safety systems are essential for managing the inherent risks of hydrogen. A key example is the hydrogen production process, which involves the use of electrolysers to split water into hydrogen and oxygen. These systems require comprehensive safety functions to monitor and safeguard critical factors such as pressure and temperature. As the scale of hydrogen production increases, the complexity and sophistication of safety systems must evolve to match the rising risks associated with large-scale operations.

Transportation and storage: the key challenges

Transportation and storage of hydrogen present additional safety challenges. Due to hydrogen’s molecular properties, it is a highly permeable gas that can leak through even the smallest of cracks in pipelines, posing significant risks. To prevent leaks, advanced leak detection systems are essential. These systems monitor pipelines and storage tanks, providing early warnings and enabling swift corrective action in the event of a leak. Hydrogen storage also requires specialised safety measures. Safety protocols must ensure that storage facilities are equipped with fail-safe systems to mitigate potential risks.

Hydrogen in public transportation: safe and clean

In the UAE, hydrogen is being explored as an alternative fuel for public transportation. Hydrogen-powered buses, trains and other vehicles offer a cleaner alternative to conventional fossil fuel-powered transportation, especially in urban areas where reducing emissions is a priority. However, the integration of hydrogen into public transportation systems requires careful planning and implementation of advanced safety measures.

Safety systems must be developed to manage the use of electricity or hydrogen, depending on the infrastructure. In areas without such infrastructure, hydrogen may serve as the primary energy source. This hybrid approach ensures the safe and efficient operation of hydrogen-powered transportation.

Smart security for safe hydrogen use

As the use of digital technologies and automation in hydrogen systems increases, cybersecurity becomes an increasingly critical aspect of functional safety. The potential for cyberattacks on hydrogen production, storage and transportation systems presents a significant risk to safe and reliable operations. Therefore, it is essential to implement robust cybersecurity measures to protect these systems from malicious threats.

As the UAE continues to innovate in hydrogen technology, safeguarding these systems from cyber threats will be as crucial as the physical safety protocols in place to protect against other risks.

Looking ahead

The UAE is well-positioned to become a global leader in hydrogen production, particularly with its strong commitment to clean energy. However, to fully realise the potential of hydrogen as a key component of the UAE’s energy strategy, advanced safety solutions must be integrated across the entire hydrogen value chain. From production and storage to transportation and end use, these safety systems must evolve in tandem with technological advancements to mitigate risks and ensure the safe and efficient use of hydrogen.

By prioritising functional safety solutions, the UAE can lead by example in demonstrating how hydrogen can be safely and effectively harnessed as a clean energy source, further supporting the nation’s ambitious energy goals and contributing to global efforts toward a sustainable, zero-emission future.

 

Flaring is a leading source of the MENA region’s emissions. (Image source: Adobe Stock)

Fossil fuel operations in the Middle East and North Africa emitted around 20 Mt of methane in 2024, nearly all from oil and gas operations, with Iraq, Iran and Algeria accounting for more than 30% of the flared volumes and related methane emissions, according to the IEA’s latest Global Methane Tracker 2025

The recently updated Global Methane Tracker presents the IEA’s latest sector-wide emissions estimates – based on the most recent data from satellites and measurement campaigns – and discusses the various abatement measures available to tackle them.

Flaring is a leading source of the MENA region’s emissions, accounting for around 25% of the total. Performance varies greatly, with Libya, Algeria and Iran having relatively high upstream methane intensities, while Saudi Arabia, Qatar and the United Arab Emirates perform better than the global industry average.

Satellites made more than 800 methane emission observations over Algeria, 400 in Iran, and 165 in Iraq, with incomplete combustion from burning pits identified as the leading source of emissions in Algeria and Egypt, followed by gas lift system vents and equipment venting. Flaring and direct venting have also been identified as major sources in Iraq. The IEA is working to support Iraq’s oil and gas methane mitigation efforts.

The IEA highlights that many of the region’s national oil companies have joined the OGDC (Oil & Gas Decarbonization Charter) or OGMP 2.0 (Oil & Gas Methane Partnership), including the UAE’s ADNOC, Libya’s National Oil Corporation (NOC), Saudi Arabia’s Aramco, Bahrain’s Bapco Energies and Petroleum Development Oman. All countries in the region participate in the Global Methane Pledge except for Algeria, Iran and Syria, with many also subscribed to the World Bank’s Zero Routine Flaring by 2030 Initiative. However, fewer countries have developed regulations designed to limit oil and gas methane emissions. Most countries have flaring and venting restrictions, but flared volumes have increased by over 50% since 2010.

Global methane emissions remain stubbornly high

Globally, the fossil fuel sector is responsible for nearly one-third of methane emissions from human activity, according to the IEA. Emissions exceed 120 mn tonnes (Mt) annually, thanks to record production of oil, gas and coal, combined with limited mitigation efforts.

Abandoned wells and mines have been included in this year’s Global Methane Tracker for the first time, and were found to have contributed around 8 Mt to these emissions in 2024. Closure plans should include measures to mitigate methane emissions, the IEA says, noting that timely action is critical for effective mitigation as most emissions result from mines and wells that have recently been abandoned.

A further 20 Mt of methane arises from bioenergy production and consumption.

According to the Tracker, around 70% of annual methane emissions from the energy sector could be avoided with existing technologies such as leak detection and replacing faulty equipment. The IEA points out the cost-effectiveness of such measures, since the gas that is captured can be resold.

The Tracker finds that methane abatement could have made around 100 billion cubic metres of natural gas available to markets in 2024. A further 150 billion cubic metres of natural gas is flared globally each year, the majority of which is routine flaring and can be avoided.

IEA analysis finds a huge range in methane emissions intensities across different countries and companies. Raising awareness and spreading best practices are essential to narrow this gap, it notes.

Satellites are bringing increased transparency, with satellite-detected emissions from super-emitting methane events at oil and gas facilities rising to a record high in 2024.

While current methane pledges by companies and countries cover 80% of global oil and gas production, only around 5% of global oil and gas output comes with near-zero methane emissions. The focus should now be on turning pledges into action, the IEA says, with strong action needed to prevent a 0.1% C rise in global temperatures by 2050.

“Tackling methane leaks and flaring offers a double dividend: it alleviates pressure on tight gas markets in many parts of the world, enhancing energy security – and lowers emissions at the same time,” said IEA executive director Fatih Birol. “However, the latest data indicates that implementation on methane has continued to fall short of ambitions. The IEA is working to ensure that governments and industry have the tools and knowledge they need to deliver on pledges and achieve the goals they have set.”

The mobile CycloneCC unit was installed on site in under a week. (Image source: Carbon Clean)

UK-headquartered Carbon Clean has announced the successful completion of the world’s first industrial deployment of its CycloneCC carbon capture technology at the Al Ruwais Industrial Complex in Abu Dhabi

CycloneCC is Carbon Clean’s breakthrough modular technology, which provides a viable alternative to conventional carbon capture plants. Process intensification reduces mass transfer equipment by a factor of 10, decreasing the overall footprint by up to 50%. The combination of rotating packed beds (RPBs) and Carbon Clean’s proprietary amine-promoted buffer salt APBS-CDRMax solvent increases the efficiency of the carbon capture process while delivering extremely high performance.

The mobile CycloneCC unit was installed on site in under a week at Fertiglobe’s nitrogen fertiliser plant in the Al Ruwais Industrial Complex in Abu Dhabi – a record for the carbon capture sector.

The CO2 captured from a reformer flue gas stack has been used by Fertiglobe in urea production.

The modular unit has achieved the major milestone of around 4,000 operating hours over a six-month period. CycloneCC has been operating continuously, delivering a high purity CO2 product, which exceeds the projected target and meets Fertiglobe’s CO2 purity requirements.

System validation has confirmed that the industrial demonstration unit can now be further scaled up and commercialised.

Leveraging Carbon Clean-developed Artificial Intelligence (AI) has contributed to the plant’s increased reliability and availability, as well as maximising the performance of the solvent. The plant has been operating in open loop mode, with human operators implementing AI-suggested recommendations.

Aniruddha Sharma, chair and CEO of Carbon Clean, said, “Fertiglobe’s willingness to invest in first-of-a-kind (FOAK) projects cements its status as a decarbonisation pioneer. Our collaboration with Fertiglobe for this industrial demonstration unit is a major step towards CycloneCC’s full commercialisation, so that it can be deployed at scale globally. Installing a carbon capture plant in less than a week is a feat never achieved before. We’re excited to have delivered this industry first in carbon capture.”

Ahmed El-Hoshy, CEO of Fertiglobe, added, “At Fertiglobe, creating value via sustainability is at the heart of our operations. We are committed to meeting the increasing global demand for low-carbon solutions, which bring us closer to a more sustainable future. This collaboration with Carbon Clean at our facility in Al Ruwais reflects our commitment to leveraging advanced technologies, including AI, to advance our decarbonisation goals and meet rising global demand for our products.”

See also: https://oilreviewmiddleeast.com/energy-transition/celeros-flow-technology-and-carbon-clean-partner-for-carbon-capture

Aramco is exploring options to capture CO2 both at the point of emissions and directly from the atmosphere. (Image source: Adobe Stock)

 

Aramco has launched Saudi Arabia’s first CO2 Direct Air Capture (DAC) test unit, capable of removing 12 tons of carbon dioxide per year from the atmosphere

Direct air capture (DAC) technologies extract CO2 directly from the atmosphere at any location, for storage or utilisation, unlike carbon capture which is generally carried out at the point of emissions,. It is the most expensive application of carbon capture, although the IEA points out that Innovation in CO2 use opportunities, including synthetic fuels, could drive down costs and provide a market for DAC. There are currently around 130 DAC facilities in various stages of development globally.

The Aramco pilot plant, developed in collaboration with Siemens Energy, will be used as a testing platform for next-generation CO2 capture materials and will also seek to achieve cost reductions that could help accelerate the deployment of DAC technologies in the region. Aramco and Siemens Energy intend to continue working closely together with the aim of scaling up the technology, potentially leading to the establishment of large-scale DAC facilities in the future.

Carbon capture is a key pillar in Aramco’s ambition to achieve net-zero Scope 1 and Scope 2 greenhouse gas emissions across its wholly-owned operated assets by 2050. The company is exploring options to capture CO2 both at the point of emissions and directly from the atmosphere, through its circular carbon economy approach and the deployment of innovative technology solutions.

The launch of the DAC test facility follows the announcement in December 2024 that Aramco and its partners, Linde and SLB, had signed a shareholders’ agreement progressing the development of a Carbon Capture and Storage (CCS) hub in Jubail, set to be one of the largest in the world. Phase one of the CCS hub will have the capacity to capture nine million tonnes of CO2 from three Aramco gas plants and other industrial sources, with the potential for expansion in later phases.

Ali A. Al-Meshari, Aramco senior vice president of Technology Oversight and Coordination, said, “Technologies that directly capture carbon dioxide from the air will likely play an important role in reducing greenhouse gas emissions moving forward, particularly in hard-to-abate sectors. The test facility launched by Aramco is a key step in our efforts to scale up viable DAC systems, for deployment in the Kingdom of Saudi Arabia and beyond. In addition to helping address emissions, the CO2 extracted through this process can in turn be used to produce more sustainable chemicals and fuels.”

In December, King Abdullah Petroleum Studies and Research Center (KAPSARC) and Climeworks, a global leader in carbon dioxide removal technology, signed a Memorandum of Understanding (MoU) to jointly explore and advance Direct Air Capture (DAC) technologies within Saudi Arabia. The MoU outlines a roadmap to assess the deployment of new DAC systems in the Kingdom, focusing on availability of natural resources including subsurface CO2 storage.

Fadi Al-Shihabi, partner, sustainability solutions leader, KPMG Middle East. (Image source: KPMC Middle East.)

Fadi Al-Shihabi, partner, sustainability solutions leader, KPMG Middle East discusses how the Gulf states are turning the fossil fuel legacy into a blueprint for a circular economy

The World Meteorological Association has predicted that global temperature is likely to exceed 1.5°C above pre-industrial levels temporarily in the next five years. Amid rising global investments in renewable energy, governments are strengthening their climate action plans as they target urgent implementation over the next few years.

In the GCC region, Gulf nations are embracing a forward-thinking policy to address environmental challenges, setting a global benchmark for how circular economy practices can drive sustainable economic growth. Their National Visions – including Saudi Vision 2030, UAE Green Agenda 2030, Oman Vision 2040 and Qatar National Vision 2030 – all envisage advancing sustainable industrial development, emphasising energy efficiency, waste reduction and renewable resources.

Transforming manufacturing is the key to reducing waste and energy consumption, promoting responsible consumption and reducing environmental impact. In this context, the evolution of the Gulf's manufacturing sector is a testament to the region's adaptability and foresight. We are also seeing the enhancement of value chains in the region through the production of more raw materials locally, fostering cross-sector synergies to boost industrial localisation efforts. By leveraging their expertise in energy production and their significant financial resources, GCC nations are not only keeping pace with global sustainability trends but are setting new standards in socio-economic development.

Making the circular economy a reality in the GCC

The GCC is steering toward zero landfill as part of its ambitious net-zero targets. Key efforts include waste-to-energy projects and increased recycling, both of which are reshaping the manufacturing sector, by promoting green, circular economy practices and advancing sustainable development across the region.

Additionally, research continues to drive innovation, particularly in advanced waste conversion technologies. The UAE introduced a circular economy policy in 2021, which implements resource efficiency, minimises waste, and fosters economic value from materials traditionally considered waste. Furthermore, Saudi Arabia's bold recycling initiative aims to recycle 95% of its waste, contributing US$31.99bn to GDP, creating 100,000 jobs, and positioning the Kingdom as a global leader in sustainability by 2040 through advanced waste management strategies. While Qatar's Ministry of Municipality plans to build an engineered landfill in Al Khor, adhering to the highest international standards, and operating a plant for recycling materials.

In Saudi Arabia, Clorox's Dammam and Jeddah plants have already achieved 100% zero waste to landfill. Additionally, KAUST startup Edama Organic Solutions has opened the Kingdom's first organic waste recycling facility at the KAUST Research. Oman too is launching its first Waste-to-Energy (WTE) project, which is expected to cut landfill carbon emissions by 50 million tons over 35 years.

Each of these projects exemplify the shift to a circular economy, with resource efficiency principles woven into national economic and environmental strategies. The approach goes beyond just waste reduction, aiming to extract value from it instead. An example is the ambitious e-waste recycling project in Salalah, the largest in Oman. This initiative tackles the rising issue of electronic waste while creating new economic opportunities, solidifying Oman’s position as a leader in sustainable waste management and resource efficiency.

Overcoming obstacles

There is no doubt that the shift towards sustainability is opening new markets and driving demand for eco-friendly products and services. Companies that prioritise sustainability are finding themselves at a competitive advantage, fostering both environmentally conscious consumers and investors.

Despite notable progress, several hurdles still impede the full implementation of effective waste management systems. With robust regulations still being in the works, and high initial costs, particularly for advanced technologies, remain a significant barrier. Additionally, on a wider scale, limited recycling infrastructure restricts broader adoption.

Additionally, greater public awareness and engagement are needed to drive meaningful behavioral change. These challenges also offer opportunities for innovation, investment, and policy reform. By addressing these issues, the region could unlock more cost-effective solutions, foster new partnerships, and pave the way for sustainable and efficient waste management practices.

Gulf nations are also tapping into their energy production expertise to drive waste-to-energy initiatives, marking a decisive move toward sustainable development. This niche area of expertise that had traditionally been utilised in oil wealthy nations but has been rare to find globally, is an essential piece of the puzzle to extend the reach of renewable energy and its accessibility.

The road ahead

The road to a circular economy and waste reduction is set to positively impact the employment market, as the Middle East invests around US$1 trillion in clean energy over the next decade, marking a transformative shift in the region’s economic landscape. This substantial investment is projected to generate around 300,000 new jobs by 2030 and inject an additional US$100bn into the regional economy, underscoring the Gulf's growing commitment to sustainable growth and energy diversification.

As we look to the future, the Gulf region's journey from oil dependency to green innovation offers valuable lessons for other resource-dependent economies within the region. It demonstrates that with vision, commitment, and strategic investment, it's possible to turn the legacy of fossil fuels into a blueprint for a sustainable, diversified economy.

The sands are shifting in the Gulf, and as they do, they are revealing a green oasis of opportunity – one that promises a more sustainable and prosperous future for the region and the world.
-----

More Articles …